AS & A Level CANDIDATE NAME CENTRE CANDIDATE NUMBER NUMBER **CHEMISTRY** 9701/35 Paper 3 Advanced Practical Skills 1 **October/November 2018** 2 hours Candidates answer on the Question Paper. As listed in the Confidential Instructions Additional Materials: **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Give details of the practical session and laboratory where appropriate, in the boxes provided.

Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations

Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Cambridge

International

09

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11. A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	

For Examiner's Use									
1									
2									
Total									

This document consists of 12 printed pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 In this experiment you will determine the percentage purity of a sample of impure anhydrous sodium carbonate. You will use two different methods to measure the enthalpy change of reaction when a sample of impure anhydrous sodium carbonate reacts with excess dilute hydrochloric acid.

FA 1 is a sample of the impure anhydrous sodium carbonate.
FA 2 is 2.00 mol dm⁻³ hydrochloric acid, HC*l*.
FA 3 is a second sample of the impure anhydrous sodium carbonate used in FA 1.

(a) Method 1

• Weigh the container with FA 1. Record this mass.

mass of container with FA~1 =g

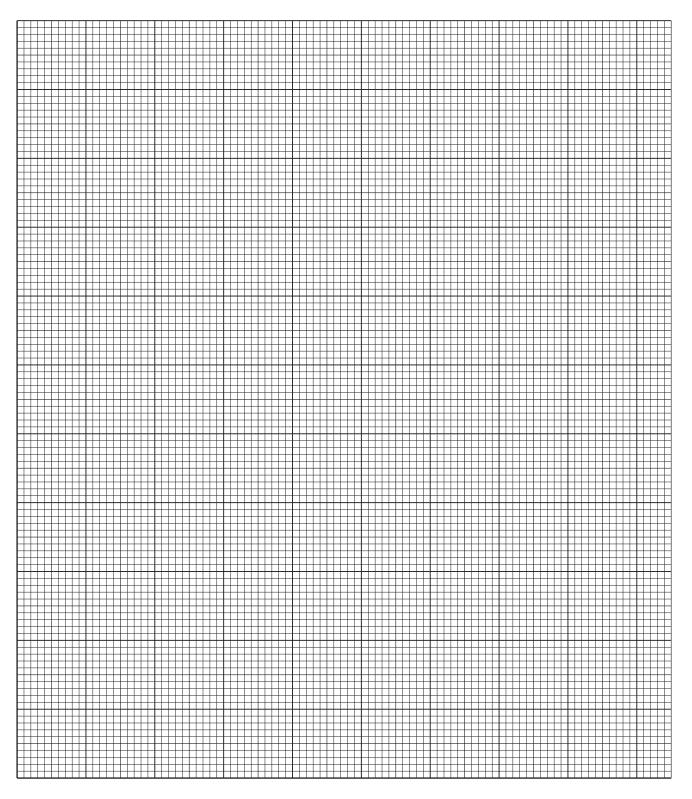
- Support one of the plastic cups in the 250 cm³ beaker.
- Use the measuring cylinder to place 25 cm³ of **FA 2** into the cup.
- Measure the temperature of the **FA 2** in the cup. Tilt the cup if necessary so that the bulb of the thermometer is fully covered. Record this temperature at time t = 0.
- Start the stopclock and leave it running for the whole experiment.
- Measure and record the temperature of **FA 2** in the cup every half minute for 2 minutes.
- At $t = 2\frac{1}{2}$ minutes tip all the **FA 1** into the cup. Stir the contents of the cup.
- Measure and record the temperature of the contents of the cup at *t* = 3 minutes and then every half minute up to *t* = 9 minutes.
- Weigh the container with any residual **FA 1**. Record this mass.

Ι

Π

III

IV


mass of container with residual **FA 1** = g [5]

(b) (i) On the grid on page 3, plot a graph of temperature (*y*-axis) against time (*x*-axis). You should choose a scale that allows you to plot 2 °C above the maximum temperature reached.

On your graph, draw two straight lines of best fit. One line is for the temperature before adding **FA 1** and the other line for the cooling of the solution once reaction is complete.

Extrapolate these two lines to $t = 2\frac{1}{2}$ minutes.

[4]

(ii) From your graph, find the theoretical temperature rise at $t = 2\frac{1}{2}$ minutes.

theoretical temperature rise = °C [1]

(c) (i) Calculate the energy released in the reaction.

(Assume 4.2 J of heat energy changes the temperature of $1.0 \, \text{cm}^3$ of solution by $1.0 \,^\circ\text{C}$.)

energy released = J [1]

(ii) The equation for the reaction between anhydrous sodium carbonate and hydrochloric acid is shown.

 $Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(I)$

The literature value for the enthalpy change of this reaction is $-27.0 \text{ kJ mol}^{-1}$.

Use this figure, and the value that you found in (i), to find the mass of anhydrous sodium carbonate you used in (a). You should assume that no energy was lost to the surroundings in your experiment.

mass Na_2CO_3 = g [2]

(iii) Calculate the percentage of anhydrous sodium carbonate present in FA 1.

percentage Na_2CO_3 in **FA 1 =** % [1]

(d) In your calculation in (c), what assumption have you made about the impurity present in FA 1?

......[1]

(e) Method 2

- Weigh a clean, dry plastic cup and record the mass.
- Add between 1.70 g and 1.90 g of **FA 3** to the plastic cup and record the mass.
- Support the plastic cup in the 250 cm³ beaker.
- Pour 25 cm³ of **FA 2** into the measuring cylinder.
- Measure and record the initial temperature of **FA 2** in the measuring cylinder.
- Pour the 25 cm³ of **FA 2** into the plastic cup.
- Stir the contents of the cup and record the maximum temperature. Tilt the cup if necessary so that the bulb of the thermometer is fully covered.
- Calculate and record the mass of **FA 3** used and the change in temperature.

[2]

(f) Use the temperature rise in (e), and the fact that the enthalpy change for the reaction between anhydrous sodium carbonate and hydrochloric acid is -27.0 kJ mol⁻¹, to calculate the percentage of anhydrous sodium carbonate in **FA 3**.

(g) FA 1 and FA 3 are both samples of the same impure anhydrous sodium carbonate and so the percentage of anhydrous sodium carbonate found using Method 1 and Method 2 should be the same. In practice the percentages are sometimes different from each other.

In both methods, percentage errors occur due to measuring the mass of solid and the temperature rise.

Ignoring these errors, which method is more accurate? Tick the correct box and explain your answer.

Method 1 more accurate	
Method 2 more accurate	
Method 1 and Method 2 equally accurate	

[1]

(h) A student decided to confirm by experiment the literature value for the enthalpy change of the reaction between anhydrous sodium carbonate and hydrochloric acid. By mistake the student weighed a sample of hydrated sodium carbonate, Na₂CO₃.10H₂O, instead of anhydrous sodium carbonate, Na₂CO₃.

State what effect this would have on the calculated value of the enthalpy change for the reaction. Explain your answer.

......[2]

(i) A student used 3.00 g of anhydrous sodium carbonate that was 80.0% pure by mass.

Calculate the minimum volume of 2.00 mol dm⁻³ hydrochloric acid that would be needed to react completely with this sample of impure anhydrous sodium carbonate.

volume of $HCl = \dots cm^3$ [3]

[Total: 25]

Qualitative Analysis

Where reagents are selected for use in a test, the **full name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

2 (a) (i) FA 4 is a sodium compound that was the impurity in the FA 1 and FA 3 that you used in **Question 1**. The anion in FA 4 is one of those listed in the Qualitative Analysis Notes.

Carry out appropriate tests to allow you to positively identify the anion in FA 4.

For the test that gives a positive result, record the test and the results of it. State the name of the anion in **FA 4**.

anion in FA 4 =

[2]

(ii) Write the ionic equation for the reaction that you have used to identify the anion in **FA 4**. Include state symbols.

(b) FA 5 is a mixture that contains two cations and three anions from those listed in the Qualitative Analysis Notes.

A sample of **FA 5** was added to water and the water stirred. The mixture produced was filtered to give a solid residue, **FA 6**, and a filtrate, **FA 7**.

(i) Carry out the following tests on **FA 6** and record your observations.

test	observations
To a small spatula measure of FA 6 in a test-tube add dilute hydrochloric acid, then	
add aqueous ammonia.	
Place a small spatula measure of FA 6 in a hard-glass test-tube and heat gently.	

[4]

(ii) Carry out the following tests on **FA 7** and record your observations.

test	observations
To a 1 cm depth of FA 7 in a test-tube add aqueous sodium hydroxide.	
To a 1 cm depth of FA 7 in a test-tube add aqueous ammonia.	
To a 1 cm depth of FA 7 in a test-tube add a few drops of aqueous silver nitrate.	
To a 1 cm depth of FA 7 in a test-tube add a few drops of aqueous barium nitrate or aqueous barium chloride, then	
add dilute nitric acid.	
To a 0.5 cm depth of FA 7 in a boiling tube add a 2 cm depth of aqueous sodium hydroxide and warm, then	
add a small piece of aluminium foil.	

(iii)	From your observations, identify the two cations present in FA 5 .	
	cations and	
(iv)	From your observations, identify two anions present in FA 5 .	[1]
(v)	From your observations, identify two anions that could be present in FA 5 .	[,1]
		[1]
	[Total:	15]

Qualitative Analysis Notes

1 Reactions of aqueous cations

inn	reaction with											
ion	NaOH(aq)	NH ₃ (aq)										
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess										
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_										
barium, Ba²⁺(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.										
calcium, Ca²⁺(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.										
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess										
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution										
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess										
iron(III), Fe³⁺(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess										
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess										
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess										
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess										

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream ppt. with Ag⁺(aq) (partially soluble in NH₃(aq))
iodide, I⁻(aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))
nitrate, NO₃⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil
sulfate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

		18	² He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Кr	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon _														
		17			0	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ъ	bromine 79.9	23	Ι	iodine 126.9	85	At	astatine -				71	Lu	Iutetium 175.0	103	Ļ	lawrencium -					
		16			8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ро	polonium –	116	۲<	livermorium -	70	γb	ytterbium 173.1	102	No	nobelium -					
		15			7	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Bi	bismuth 209.0				69	Tm	thulium 168.9	101	Md	mendelevium -					
		14			9	U	carbon 12.0	14	S:	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	Pb	lead 207.2	114	Fl	flerovium -	68	ц	erbium 167.3	100	Еm	fermium -					
		13			5	Ш	boron 10.8	13	Al	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	Tl	thallium 204.4				67	Ю	holmium 164.9	66	Es	einsteinium -					
										12	30	Zn	zinc 65.4	48	Cq	cadmium 112.4	80	Hg	mercury 200.6			0	66	Dy	dysprosium 162.5	98	ç	californium -					
ements	Group														11	29	Cu	copper 63.5	47	Ag	silver 107.9	79	ΡN	gold 197.0	111	Rg	roentgenium -	65	ДÞ	terbium 158.9	97	Ŗ	berkelium -
ole of Ele										10	28	ïZ	nickel 58.7	46	Pd	palladium 106.4	78	Ę	platinum 195.1				64	Вd	gadolinium 157.3	96	Cm	curium					
The Periodic Table of Elements										0	27	ပိ	cobalt 58.9	45	Rh	rhodium 102.9	77	Ir	iridium 192.2	109	Mt	meitnerium -	63	Eu	europium 152.0	95	Am	americium -					
The Per			- T	hydrogen 1.0						80			iron 55.8			ruthenium 101.1		SO	osmium 190.2	108	Hs	hassium -	62	Sm	samarium 150.4	94	Pu	plutonium –					
					1					7	25	Mn	manganese 54.9	43	Ч	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium I	61	Рш	promethium -	93	dN	neptunium -					
											loc	SS			9	24	ū	chromium 52.0	42	Мо	molybdenum 95.9	74	\geq	tungsten 183.8	106	Sg	seaborgium -	60	PN	neodymium 144.4	92	⊃	uranium 238.0
									Key	atomic number	atomic symbol	name relative atomic mass			5	23	>	vanadium 50.9	41	ЧN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium –	59	Pr	praseodymium 140.9	91	Ра	protactinium 231.0
									ø	atol	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ηf	hafnium 178.5	104	Rf	rutherfordium -	58	Сe	cerium 140.1	90	Тh	thorium 232.0	
								L		ო	21	Sc	scandium 45.0	39	≻	yttrium 88.9	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 138.9	89	Ac	actinium -					
		2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Ś	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium -		ds									
		4			3	:	lithium 6.9			sodium 23.0		¥	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	Ļ	francium -		lanthanoids			actinoids						

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

PMT

12